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The one-dimensional linearized version of the “wave equation” model developed by Gray 
and Lynch for solving the shallow water equations is analysed. Similarities with a mixed inter- 
polation finite element method are discovered, and the proposed time-stepping methods are 
shown to be a subset of a much larger class. Using dispersion and asymptotic analyses, 
particular time-stepping methods which most accurately represent wave propagation and wave 
amplitude growth are determined for both the lumped and unlumped approaches. 

INTRODUCTION 

Recently Gray and Lynch 14, 5 ] introduced a finite element method for solving the 
shallow water equations. Rather than working with the governing equations in 
conservation form, their “wave equation” scheme involves transforming the 
continuity equation to a second-order partial differential equation. The revised system 
of equations is then solved with a Galerkin finite element method, piecewise-linear 
basis functions, and centred time stepping. Through propagation factor analyses they 
show that the resultant numerical method is more accurate than several alternatives, 
and avoids the troublesome accumulation of 2 Ax waves which often occurs with 
finite element schemes. Their numerical tests confirm these results. 

In this discussion, the one-dimensional linearized version of the “wave equation” 
method (WEM), and the lumped “wave equation” method (LWEM) are studied 
further. Accuracy is examined through a dispersion or Fourier (phase/space) analysis 
which includes group velocity. This approach is developed and illustrated in [2]. The 
importance of group velocity in numerical methods is surveyed by Trefethen [ 7 1. 

This paper is divided into seven sections. Section 1 shows that the WEM 
conditionally incorporates the same spatial discretization attributes as the mixed 
interpolation approach of Williams and Zienkiewicz [9]. Section 2 specifies its 
characteristic roots and stability restrictions. Section 3 generalizes the time-stepping 
methods proposed by Lynch and Gray by showing them to be a subset of the second- 
order linear two-step methods which can be developed for their governing equations. 
Section 4 applies these generalized two-step methods to both the lumped and 
unlumped spatial discretizations, and determines the particular methods with the most 
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accurate wave propagation, and wave amplitude growth (or decay) characteristics. 
These results are confirmed with asymptotic analyses in Section 5, and numerical 
tests in Section 6. Section 7 summarizes and briefly discusses the results. 

1. AN ANALYSIS OF THE SPATIAL DISCRETIZATION 

The linearized, one-dimensional, constant depth versions of 
equations solved by Lynch and Gray [S] are 

8*Z 
-g+T~-gh~=o, 

au 
~+ru+g;=o, 

the governing 

(la) 

(lb) 

where Z(X, t) is the elevation above mean sea level, U(X, t) the velocity, h(x) the mean 
sea depth, g the gravity, and r the linear bottom friction coefficient. After employing 
a Galerkin finite element method with piecewise-linear basis functions, the unlumped 
spatially discretized system of ordinary differential equations (ODES) becomes 

2 1 
+-Uj+~Uj+~ 

3 
+&(Zj+~-zj-l)=O~ (2b) 

where depth and dx are assumed constant, and zj, Uj are the time-dependent variable 
values at node j. Assuming travelling wave solutions of the form 

(3) 

where k is wave number and w is frequency, the dispersion relationships arising from 
(2) are 

w = it Pa) 

and 

1 - cos(k Ax) 1 1 
l/2 

2 + cos(k Ax) 
- (4,’ . WI 

The latter expression is identical to the dispersion relationship for the mixed inter- 
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polation approach recently described by Williams and Zienkiewicz 191. They solve 
the momentum equation (lb) and the customary continuity equation 

(5) 

with a Galerkin finite element method, piecewise-linear basis functions for approx- 
imating u(x, t), and piecewise constant for z(x, t). 

Equivalence of these two approaches is revealing. The principal dispersion 
relationship has not changed when the order of the continuity equation is increased 
from 1 to 2, and the order of the approximating basis function for z is increased from 
0 to 1. This suggests that similar relationships may exist between other finite element 
approaches. However, equivalence of the principal dispersion relationships does not 
imply that the numerical solutions will be identical. A secondary or parasitic 
relationship is present with the WEM and in some circumstances, it will affect the 
numerical results. 

Relative accuracy of the phase and group velocity associated with (4b) is shown in 
[2] for the case t = 0. For the one-dimensional equations, it produces one of the 
better approximations to the analytic solution. Unfortunately, efforts to extend the 
mixed interpolation formulation to triangular elements in two dimensions have proven 
difficult because of discontinuities in z(x, t) at the interelement nodes [8]. However, 
since the WEM has been extended to two dimensions, in some sense it may be 
regarded as equivalent to a successful mixed interpolation extension. 

2. NUMERICAL EIGENVALUES OF THE “WAVE EQUATION" METHOD 

Lynch and Gray solved their system of ODES with the following time stepping 
approximations which are centred for all values of the parameter B: 

$Zj(tI At) N ” Ati 
!I+1 - 22” + q-1 

, 

~~(nAt)=~B(zJ+~+zJ-‘)+(1-8)z;. (6~) 

In order to relax the stability constraints, the friction term in the momentum equation 
is treated as in (6c), but with the separate weighting parameter a. 

Applying these approximations to (2) and assuming nontrivial travelling wave 
solutions requires satisfaction of one of the following two quadratics: 

L2(1+arAt)+2tAt(l-a)L-(1-aatAt)=O, 0) 

n’[l+@E”+tAt)]+L[-2+(1-8)E2]+1+@E2-rAt)=O, (7b) 
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where 

1 - cos(k Ax) 
2 + cos(k Ax) (7c) 

and 

1 = exp(iodt). 

Constant depth, constant Ax and At are also assumed. The product of these 
quadratics is the characteristic polynomial. The roots are also eigenvalues of the 
amplification matrix resulting from a linear stability analysis of the numerical method 
[6]. Consequently, they will be referred to as either roots, or eigenvalues, throughout 
this paper. 

The eigenvalues for (7) are 

1 
I,2 

= -rAt(l-a)f [l+(rAt)=(l-22a)]“= 
1 +asAt (84 

and 

1 
3,4 

= 1 - ;(I - 8) E= + i[E= + a(219 - 1) E4 - (fz At)=]“= 

1 + f(0E’ + T AC) (8b) 

A, and L, are parasitic and arise from the spatially discretized solution (4a). They are 
independent of wave number and thus have zero group velocity. If they are real 
valued and positive, they also have zero phase velocity. A, and 1, are the principal 
numerical eigenvalues. When their imaginary parts are nonzero, they represent 
progressive and retrogressive waves. 

A necessary condition for the stability of any numerical method is 

111 Q 1.0 + O(At) (9) 

for all eigenvalues, and all k Ax in the range of (0, ~1. This is the von Neumann 
condition. When the exact solution does not grow exponentially, the O(At) term is 
usually omitted [6]. Since h(x) is assumed constant and t > 0, this is the case here. 

For the WEM eigenvalues in (8), stability is ensured with the following restrictions 
on B and a: 

(i) for the parasitic roots, 

a>$; 

(ii) for the propagating principal roots, 

0 
- Ax= 

6gh At= ; (lob) 
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(iii) for the nonpropagating principal roots, 

Ax2 ). 
3gh At’ (1Oc) 

With nonzero friction, (lob) can be made less restrictive. However. this is not 
essential since the constraint imposed by (10~) dominates. Conditions (i) and (iii) are 
given in [5]. 

An analysis of the LWEM yields similar results. With the following substitution 
for (7~) 

E* = 2gh(At/Ax)2( 1 - cos(k Ax)), (11) 

Eqs. (7) and (8) remain valid. Stability of the parasitic root is again dictated by (lOa) 
while the counterparts to (lob) and (10~) are 

-Ax’ 
da------T 2gh At 

and 

(124 

(12b) 

respectively. As with the WEM, condition (12b) overrides (12a). 

3. TWO-STEP METHODS FOR SOLVING THE ODES IN TIME 

A simple ODE corresponding to (2a) is 

(13) 

and a general two-step method which may be used to solve it has the form 

c2y”+2 + c, yn+’ + co Y” + At@, y”+* + a, yn+’ + ao yy 

=At2(b,f”+*+b,~“+‘+bo~~). (14) 

Requiring second-order accuracy (i.e., a truncation error of O(At3)) and assuming 
Gear’s normalization [ 31, 

b, + b, + b, = 1 (15) 
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leaves only three coefficients to be specified freely. Choosing them to be a2, b,, and 
b,, the others are 

c* = co = 1 9 a,=a,- 1, b, = 1 -b, -b,, 

c, = -2, a,=l-2a,. 
(16) 

Third-order methods have the additional constraints 

a2 = f, b, = b,, (17) 

while fourth-order accuracy is not possible with this set of two-step methods. 
For solving the simple ODE, 

8Y 
z =f(y) + i?(Y) (18) 

with the two-step method 

a2 yn+’ + a, y”+’ + a0 y” 

=~~(bzf”+2+b,f”+‘+b,,f”+d,g~+*+d,g~+’+d,g~) (19) 

similar ~~h.datiOnS lead to the following constraints for second-order accuracy: 

a,=a,- 1, b, = f - a2 + b,, do=+-az+d,, 

a,= l-2a,, b, = 1 + a, - 2b,, d,=f+a,-2d,. 
(20) 

In this case third-order methods also require 

b, = d, = ia, - & (21) 

and fourth-order accuracy occurs with (a2, b,, d,) = (f, d, i). 
The ODES in (2) can be solved with the preceding two-step methods. 

Simultaneously requiring at least second-order accuracy for both equations, and 
insisting on a consistent approximation for the first derivative (i.e., 
a*, a,, a,, , b,, b, , b, are the same for each method) leads to the following combined 
restrictions: 

c*=co= 1, a, = a2 - 1, b,,=$-az+b2, d,,=i-az+d,, 

c,=-2 7 a, = 1 --a*, b, = f + a2 - 2b,, d, =i +a,-2d,. 
(22) 

Notice that the particular case 

a, = 4, b, = fe, d, = ia, (23) 

makes (14) third-order accurate and is precisely the subset of time-stepping methods 
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proposed by Lynch and Gray. Fourth-order accuracy for (19) and third-order 
accuracy for (14) is obtained with the additional constraint b, = d, = b. The highest- 
order time-stepping method for both the WEM and the LWEM therefore occurs with 
0 = (r = i. However, (10a) indicates that it will be unstable. 

4. A DISPERSION ANALYSIS 

In [2] it was seen that the highest-order time-stepping method may not be the one 
which produces the most accurate phase velocity, group velocity, or wave amplitude. 
In order to determine which time-stepping method is the most accurate, a dispersion 
analysis is now performed for the two-parameter class of second-order two-step 
methods given by (22). The methods proposed by Lynch and Gray are a subset of 
this class. 

Define 

fj=$(Sj-1 +4Sj+Sj+l)Y (244 

sj=sj+, - 2sj i- sj-, ) WI 

Asj=sj+, -sipI, (24~) 

where s can be either z or u. Application of a second-order two-step method to solve 
(2) then produces the system of equations 

a2uj 
-n+2+a,u;ltl + a,$ =-At r(d,U”jn+* + d,$+’ + d,uli”) 

where the restrictions imposed by (22) are assumed but have not been included. 
For nontrivial travelling wave solutions to (25) one of the following two quadratics 

must be satisfied: 

or 

a2k2 + a,l + a, + z At(d2k2 + d,;l + d,) = 0 (264 

A2 - 2j1+ 1 + t At(a,~* + a,l + a,) + E2(b2A2 + b,L + b,) = 0. Wb) 

For the WEM, E2 and I are defined by (7~) and (7d), respectively. For the LWEM, 
E2 is defined by (11). 
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The root A= 1 can be troublesome for it represents an undamped nonpropagating 
wave. If energy is transferred to a wave number which has this eigenvalue as a 
solution, it will simply accumulate. Consequently, accuracy of the numerical solution 
can be severely affected. The root A = --I is equally undesirable for the associated 
waves are also undamped and flip sign from one time step to the next. Energy can 
accumulate here as well. In fact, any short waves with real roots of magnitude 
slightly less than 1.0 may be equally troublesome. Provided their magnitudes are 
larger than those of the desired longer waves, these short waves will decay more 
slowly (or grow more rapidly) and eventually dominate the calculations. 

The occurrence of A = f I for 2 Ax waves (i.e., when k Ax = n) is a common 
problem with finite element schemes (e.g., [g]). However, it can be avoided in this 
case. From (22) and (26), it is seen that 2 Ax waves have the solution A = 1 only 
when r = 0 and the parasitic eigenvalue is dominant. And for specified values of t 
and E’, 2 = -1 is a 2dx solution to (26a) or (26b) only for certain values of 
(a,, b2, d,). Therefore with nonzero friction and a judicious choice of these 
parameters, the generalized “wave equation” method given by (25) can avoid the 
troublesome accumulation of 2 dx waves. 

Dispersion relationships and phase and group velocities can be calculated from 
(26). Three associated functions can then be defined to measure accuracy of the 
numerical solution; one for each wave amplitude growth, phase velocity, and group 
velocity. The reader is referred to [2] for these definitions and general background to 
the subsequent discussion. Velocity accuracy measures are simply relative errors 
between the dominant numerical wave and the analytic wave. (A parasitic wave is 
dominant when the parasitic eigenvalue is larger than the principal eigenvalue.) 
Negative values denote waves travelling too slowly while zero values are optimal. For 
example, -0.01 denotes a numerical velocity which is 1% too slow. Amplitude 
measuies are ratios denoting the growth (or decay) factor per time step of the 
dominant numerical wave relative to the analytic wave. Values greater than the 
optimum of 1. signify a solution which will decay too slowly or grow too rapidly. 

Figure 1 illustrates the dispersion curves, eigenvalue amplitudes, and phase and 
group velocities for four two-step methods. Values for the analytic and spatially 
discretized solutions are also included. Results are parameterized in terms of 

zAx 
fJ = (&)1/Z 

and 

f, = (gh)1’2 g. 

The latter parameter is commonly referred to as the Courant number. 
All four methods are from the subset proposed by Lynch and Gray (i.e., they 

satisfy (22) and (23)). The first three methods have not been lumped while the fourth 

50 l/52/2-6 
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PARAMETER 
VALUES 

REAL PART EIGENVALUE 

DISPERSION AMPLITUDE 

CURVES SPECTRA 

PHASE 
VELOCITIES 

GROUP 
VELOCITIES 

0 kAx/a ’ ’ khxh ’ ’ khxh ’ ’ kAxh I 

WEM 

1, =o IO f,=O.SO x2 t 
a,=050 bl=O.OO <1 

d, =0.5 F I 
otL------1 485$---------, ,-L----l -It----l 

0 
kAxh ’ ’ kAx/rr ’ ’ kAxh ’ ’ kAx/r ’ 

LWEH 
f,=o.lo 1,=100 
a,=0.50 be=0 00 

d, = 0.5 

0 kAx/r ’ 0 kAxh ’ 

STABILITY LIMIT ----- FULLY DISCRETIZED VALUES - 

ANALYTIC VALUES . .._ _... _ PRINCIPAL CURVE P 
VALUES FROM SPATIAL DlSCRETlZAtlON .- -.- 

FIG. 1. Dispersion curves, eigenvalue amplitudes, and phase and group velocities for four “wave 
equation” models. 

has. Stability of the parasitic eigenvalue is ensured for all four methods by choosing 
d, = fa = $. The first and second methods are the fully implicit and fully explicit 
cases introduced in [4]. The third method produces third-order accuracy for (14) and 
second-order accuracy for (19). Its principal dispersion curve and phase and group 
velocities are seen to approximate the analytic values closely. In fact, wave 
propagation inaccuracies which were introduced by the spatial discretization have 
been effectively cancelled by the time-stepping method. If for this method d, were 
also equal to %, (19) would become fourth-order accurate but unstable. Specifically, 
the amplitude of the parasitic eigenvalue would now exceed 1.0 for all k Ax. 

The fourth method is the explicit LWEM. It should be more economical in both 
storage requirements and computation time than the other three methods. 
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f, = 1.0 kAx/lr = 0.1 

;-;\m m my;b2 

0.5 1.25 2.0 0.5 1.25 2.0 0.5 1.25 2.0 

02 a2 

0.5 1.25 213 

0.5 1.25 2 .o 0:5 I:25 210 

a2 

1.5 

.75 b2 

.75 b2 

02 a2 02 

1.5 I.5 

0.20 

b2 75 .75 b2 

0.0 0.0 
0.5 1.25 2 .o 0.5 1.25 2.0 0.5 1.25 2.0 

a2 a2 02 

FIG. 2. Accuracy measure values for the WEM as functions of (a,, b,) for f, = 1.0, d, = 0.5, and 
kdx/n=O.l. 

Surprisingly, this economy does not correspond to a loss in accuracy. Its wave 
propagation characteristics are seen to be as accurate as those of the third example, 
while its eigenvalue amplitude is more accurate. 

Figure 2 shows accuracy measure values for the WEM as functions of the two-step 
parameters a2 and b,. d,, f2, and k Ax/a are fixed at 0.5, 1.0, and 0.1 respectively, 
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while f, assumes four increasing values. In all instances, the stability region is 
bounded from below by the heavy solid line and to the left by a2 = 5. Large regions 
which have not been contoured have constant accuracy measure values that are due 
to a dominant parasitic eigenvalue. In particular, the roots of (26a) are real valued 
thereby making both the phase and group velocity zero and their corresponding 
accuracy measures -1. For fi = 0.0, the parasitic eigenvalue A= 1 is dominant 
everywhere except along the line a = 4. For larger f, , larger values of a, are required 
before the parasitic roots dominate. 

A similar plot with f2 = 0.5 exhibits many of the same features. In general, the 
stability region becomes less restrictive (i.e., the lower stability boundary drops) and 
the parasitic eigenvalue becomes dominant for slightly larger values of aI. The most 
notable characteristic of both plots is that all lines of optimal accuracy either lie very 
close to, or cross the line a2 = f. (Optimal values for the velocity and amplitude 
measures are 0.0 and 1.0, respectively.) This phenomenon seems to be independent of 
the value k Ax/n = 0.1 for it also occurs with& = 0.1 and the k Ax/n values 0.05, 0.2 
and 0.4. 

In light of the previous two-step method development, greater accuracy with a, = 4 
is not surprising. It substantiates the desirability of third order accuracy for (14). It 
also suggests that one can restrict the search for an optimal method to the subset 
originally proposed by Lynch and Gray. In subsequent discussions it is therefore 
assumed that the parameters b, and 8, and d, and a are related through (23). 

Figure 3 shows a series of revised accuracy measure contours for the WEM and 
the case fi = 1.0 and a, = d, = f. Fixing a, permits its replacement along the 
horizontal axis with k Ax. The accuracy measures are revised in the sense that they 
are calculated only from the principal eigenvalue. The small regions where the 
parasitic eigenvalue dominates have been shaded, but the accuracy measure values do 
not reflect this dominance. A concentration of contour lines near k Ax = 0 has not 
been shown because nonzero friction does not permit a wave solution there. The 
associated accuracy measure values are therefore meaningless. Constant uncontoured 
values in the lower right corner of the plot arise because the principal eigenvalue is 
real valued and unstable. 

Two important points are evident from Fig. 3. The first is that except for very 
small wave numbers, the single value b, = i (0 = +) produces optimal accuracy for 
both the phase and group velocity. Moreover, it remains optimal for all k Ax and is 
virtually independent of fi. The second point is that except for small wave numbers, 
b, = 0 produces optimal accuracy for the wave amplitudes. It is also independent of 
k Ax and fi, although for f = 0.0, it does occur over a large region. 

Figure 4 is a similar plot with f, = 0.5. The optimal b, value now differs slightly 
for the two velocity measures. From the approximate optimum of b, = 0.42 for 
f, = 0.0 and small k Ax, the measure values decrease slightly with increasing k Ax, 
and increase slightly with increasing f,. The amplitude measures however remain 
optimal with b, = 0. 

Figure 5 has identical parameter values to those of Fig. 3, but is for the LWEM. 
Figures 5 and 3 are remarkably similar. The amplitude measures are virtually iden- 
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f, PHASE VELOCITY GROUP VELOCITY AMPLITUDE 

b2 0.5 

-0.5 
0. 0.37 0.75 I. 

kAXh kAx/n kAx/n 

1.5 

0.05 

b2 05 

-0.5 
0. 0.37 0.75 I 

kAx/rr 

I.5 

0.10 

b2 0.5 

-0.5 

kAx/n kAx/n kAx/n 

1.5 

0.20 

b2 0.5 

f2= 1.0 

I.5 r,! 1.0 -0.5 0.5 b2 

0.5 b2 

kAx/.r kAx/rr 

li#!isd 
I.5 

0.5 b2 

2 

0.5 b2 

kAx/n kAx/r kAx/m 

FIG. 3. Accuracy measure values for the WEM as functions of (b,, kdx) for n, = d, = 0.5 and 
f2 = 1.0. Shaded regions denote dominance of the parasitic eigenvalue. 

tical while the velocity measures seem only to differ by a vertical shift. Provided this 
result extends to other values off, andf, , it has two important implications. The first 
is that lumping has not affected wave amplitude accuracy. The second is that by 
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f, 
I.5 

0 .oo 

b2 0.5 

-0.5 

PHASE VELOCITY 

0'31 0'75 i. 
kAx/w 

b2 0.5 

0.37 0.75 I. 
kAx/n 

b2 0.5 

-0.5 
0. 0.37 0.75 I. 

kAx/n 

f,=0.5 

GROUP VELOCITY AMPLITUDE 

d 1.0 05 15 -0 5 b2 

0 37 0 75 I. 0. 0.37 075 I. 
kAx/'n k&x/n 

kAx/n kAx/n 

0.37 0.75 I. 
kAxh 

a 

1.5 

‘0, 
0.5 

10 

0 s9 
-0 5 

0. 0.37 0.75 I. 
khxh 

l---l5 
1 to.5 

ITto ~.,: 
0. 0.3-r 0.75 1, 

b2 

b2 

b2 0.5 
0.5 b2 

kAx/n kAx/n kAx/n 

FIG. 4. Accuracy measure values for the WEM as functions of (b2, k Ax) for a2 = d, = 0.5 and 
f2 = 0.5. Shaded regions denote dominance of the parasitic eigenvalue. 

simply choosing a different time-stepping method, any wave propagation accuracy 
with the WEM is also possible with the LWEM. These hypotheses are confirmed in 
Section 5. 

Combining the restriction a2 = i with (26) and (22) has the following implications 
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fl PHASE VE LOC ITY GROUP VELOCITY AMPLITUDE 

b2 0.5 

-0.5 
0 0’37 0175 I 

kaxh 

1.5 

0.05 

b2 0.5 

-0.5 

kAx/n kAx/n khxh 

b2 05 

-0 5 

kAx/rr kAx/rr kAx/r! 

b2 0.5 

-0.5 
0. 0.37 0.75 I 

kAx/c- kAx/n k&x/n 

f,= 1.0 

!, 1.0 10 -0 1.5 05 5 b2 

0 0 37 075 I 0 0 37 0.75 I 
kAx/n kAx/n 

0.5 b2 

05 b2 

FIG. 5. Accuracy measure values for the LWEM as functions of (bZr k dx) for aI = d, = 0.5 and 
f2 = 1.0. Shaded regions denote dominance of the parasitic eigenvalue. 

for 2 Ax waves: A = 1 does not satisfy (26b) and only satisfies (26a) when z = 0; 
A = -1 satisfies (26a) when either d, = i or sdt = 0, and satisfies (26b) when 

b, = $( 1 - (1/3f;) for the WEM, @a) 
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and 

b, = ;(I - (l/f:>> for the LWEM. (28b) 

Therefore with d, > a (0 > 3) and r # 0, 2 Ax waves should accumulate only when 
the time-stepping method parameter b, , and the Courant number fi, are related by 
(28). Since d, > a is required for stability, and bottom friction is usually included in a 
model, these first two restrictions are normally satisfied. 

5. AN ASYMPTOTIC ANALYSIS 

The preceding accuracy measure analysis suggests that for small k Ax, it is 
possible to choose a value of b, or f? which produces optimal accuracy for phase and 
group velocity, or wave amplitude growth. It also implies that an accuracy loss 
through lumping can be avoided. In this section, these hypotheses are confirmed with 
an asymptotic expansion for small k Ax. Since numerical models are usually designed 
so that desired wavelengths are at least 20 Ax (i.e., k Ax < 0.3 14), such an expansion 
is valid. Desired waves which are significantly shorter in some model regions suggest 
the need for a mesh refinement. Short waves (e.g., 2 Ax waves) that have been 
generated by boundary conditions, interfaces, and round-off errors may exist in a 
model and may be important insofar as they can contaminate the desired waves. 
However, it is not important that they be modelled accurately, only that their growth 
be controlled. 

The analytic dispersion relationship for (5) and (lb) is 

w = i Qr + [ghk’ - ($)‘I li2. 

Therefore 

(29) 

Re(o At)2 =fz (k Ax)’ - ($7 At)2. (30) 

Assuming a nonzero imaginary part for the complex root 

A = r exp(i#) (31) 

of the general quadratic 

(32) 

implies 

d = arcsin (‘I2 

where 

[ = 1 - (b2/4ac). 
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Provided C < 1, the associated power series expansion [ 1 ] is 

4 = P + d c3’* + -&J/2 + 0([7/2)* (34) 

Therefore 

0’ = c + f C’ + &83_r3 + O(C”). (35) 

Applying these results to the quadratic for the principal eigenvalues arising from 
the WEM, (7b), yields 

r = E* - E4($ - @) - (37 At)* 

(1 + @E*)* - (;zdt)* ’ 

Setting x = k Ax, an asymptotic expansion of E2 for small x is 

E2 =f :x2 

(36) 

(37) 

and a similar expansion for E4 is 

E4 =f;x4(1 + ix’) + 0(x*). (38) 

Substituting these expansions into (36) yields 

4. =f;x* +f;x”(--fe + (1/12f;) - a) + 0(x6) - (fr At)2( 1 + 0(x2) + 0((7 At)2)) (39) 

and substituting (39) into (35) produces 

4’ =f:x2 +./yx”[-QS + A(1 + (l/f:))] + 0(x6) 

- (;7 At)2( 1 + 0(x2) + O((7 At)2)). (40) 

But in this case, 4 = o, At where w, is the frequency arising from the principal 
numerical eigenvalue. Matching (40) with (30), it then follows that w, will be a good 
approximation to Re(o) when 

e= d(l + (l/f:)). (41) 

For the f2 values 1 and $, (41) predicts that the best approximation to the analytic 
dispersion relationship will occur for 8 = 4 and 2, respectively. These same values 
should also produce the most accurate phase and group velocities. This is confirmed 
by Figs. 3 and 4. 

An asymptotic analysis of the LWEM follows similarly. The expansion of E* for 
small x now becomes 

E2 =f ;x’ 
1 1 

’ -xx2 + 360 
-x4 + 0(x8) (42) 
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and the best representation of the analytic dispersion relationship is attained with 

8= a(1 - (l/f:)). (43) 

Denoting the optimal parameter values of (41) and (43) by 19*, both the lumped 
and unlumped versions of (40) can be reexpressed as 

4’ =f;x* + Q-:x4(8* - e) +./-ix6 
[ 
f(13*-8)*+&(l-$)] 

2 

+ 0(x8) + O((z At)*). (44) 

This explains the similar contour patterns in Figs. 3 and 5. Around their respective 
6* values, both the WEM and LWEM have the same accuracy deterioration for 4’. 
Furthermore, the best time-stepping method for the lumped scheme produces the 
same wave propagation accuracy (to O((kdx)*)) as the best time-stepping method 
for the unlumped scheme. 

A similar asymptotic analysis reveals the optimal value of 0 for wave amplitude 
accuracy. In this case, the analytic eigenvalue amplitude for a propagating wave is 

(45) 

and its counterpart for a propagating principal numerical eigenvalue is 

1 + (e/2) E2 - (5 df/2) 
IA’ = ( 1 + (e/2) EZ + (TAl/2) 1 

I’* 
. (46) 

The time-stepping parameter value 

e=o (47) 

now produces highest accuracy since it matches terms to O((td~)~). This value has 
further advantages. It denotes an explicit time-stepping method. So when combined 
with the lumped approach, it is most economical with regard to storage requirements 
and computation time. It also makes (46) independent of k Ax, and identical for both 
the WEM and LWEM. Consequently, the optimal accuracy associated with B = 0 is 
not lost in switching from the WEM to the LWEM. These results are substantiated 
by Figs. 3-5. 

Figure 6 illustrates the stability regions and the most accurate time-stepping 
methods for both the WEM and LWEM. Values forf2 and 0 should be chosen so that 
the resultant numerical method is stable. The particular choice will be a compromise 
between accuracy and time-step size. Large values of At (or f2) result in less 
computation cost but are usually less accurate. The choice (e,f,) = (4, 1) provides the 
largest stable At with optimal wave propagation accuracy for the WEM. The similar 
choice for the LWEM, (@,f,) = (0, l), is also most accurate for wave amplitude. 
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EQUATION" MODEL 

FIG. 6. Stability regions and lines of optimal accuracy for the unlumped and lumped approaches. 
Asterisks denote methods used in the test problems, shaded areas denote stability, and the most accurate 
methods for wave propagation and wave amplitude decay are shown with solid and dashed lines, respec- 
tively. 

6. NUMERICAL TESTS 

The analysis of Section 4 was further confirmed with numerical tests similar to the 
first series reported in [2]. Depth, dx, and At were constant through each test and the 
additional complication of boundary conditions was avoided by choosing a ring as 
the test domain. The test conditions therefore correspond to the assumptions 
underlying the dispersion analysis. All tests were initial value problems where a single 
progressive wave was studied as it travelled around the ring. Such tests permit 
validation of the amplitude and phase velocity accuracy measure functions. Further 
experiments with two progressive waves were not performed but could be expected to 
produce a validation of group velocity accuracy similar to the demonstration in [2]. 

Six test problems were selected, each with f, , fi, and k AX/K values corresponding 
to one of the plots in Fig. 3 or 4. Wavelength and depth were chosen so that the 
resultant problem would be realistic for semidiurnal tides along a one-dimensional 
continental shelf. 

Each test problem was run for approximately 10 periods and solved with seven 
different second-order two-step methods. Analytic values for z(x, t) and U(X, t) at 
times 0 and At were used as initial conditions. All methods had a, and d, fixed at f 
and so were characterized solely by their b, values. The (0,&) pairs for the test 
problems are shown with asterisks in Fig. 6. In each test, the amplitude and phase lag 
of the wave were calculated at the end of each period and compared to the analytic 
results. The amplitude change per time step and the non-dimensional phase velocity 
were also calculated and compared to the values predicted by a dispersion analysis of 
the numerical method. 

Results of the WEM tests are given in Table I. A run was judged unstable when 
the absolute value of the first elevation point became greater than 10 times the initial 
amplitude. All unstable methods are predicted by (10). Methods which produce the 
most accurate representations of wave amplitude decay and phase velocity are 
designated. For all tests; they confirm the predictions in Figs. 3 and 4. 

All discrepancies between the analysis and model results were less than 1%. 
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TABLE1 

Numerical Test Results 

Problem numbz 

Two-step method Source 
parameter: of 

b, = results 

0.0 
Analysis 
Model 

0.08333 

0.16667 

Analysis 0.95741 1.07407 0.95 158 0.99205 
Model Unstable Unstable 

Analysis 0.96223 0.99981” 
Model 0.96223 0.99981 

0.25 
Analysis 0.96607 0.93929 

Model 0.96638 0.93961 

0.33333 

0.41667 

Analysis 0.96920 0.88870 
Model 0.96921 0.88872 

Analysis 0.97180 0.84555 
Model 0.97009 0.84379 

0.5 
Analysis 0.97399 0.80818 

Model 0.96840 0.80720 

Analytic Analysis 0.95123 0.99921 
solution Model 0.95123 0.99921 

1 2 

J-1 f* k Ax/n f, f2 k Ax/n 
0.10 1.0 0.4 0.10 1.0 0.1 

I4 fxdv* 111 C/(gh) “* 

0.95119” 1.16840 0.95119” 0.99610 
Unstable Unstable 

0.95 197 0.98806 
0.95197 0.98810 

0.95235 0.98411 
0.95237 0.98415 

0.95272 0.98022 
0.95276 0.98028 

0.95309 0.97636 
0.95314 0.97649 

0.95345 0.97256 
0.95350 0.97276 

0.95123 0.98725 
0.95123 0.98725 

‘Most accurate value. 

Relatively large values can be traced to the initial conditions. For all test methods, 
the z(x, t) and u(x, t) values specified at time At are inconsistent, in varying degrees, 
with the numerical behaviour of the progressive wave. Consequently, energy is 
assigned to the other numerical waves. Interference of these waves then causes the 
numerical results to differ from those predicted by the dispersion analysis. For 
example, in test 1 with b, = f, the retrogressive wave is initially assigned an 
amplitude which is 13% that of the progressive wave. The stationary parasitic waves 
receive no energy. 
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for the WEM 

and parameter values 

3 4 5 6 

J-1 f* kA+ f, fz kA-+ f, h kA.0 f, fz k Ax/n 
0,oo 1.0 0.2 0.05 0.5 0.4 0.05 0.5 0.1 0.20 0.5 0.2 

- 

111 C/(gh)“’ C/kh)‘i2 ILI C/(d)“’ Cl(gh) “2 

l.ODOOOO 1.03464 0.98758” 1.08719 0.98758” I I!0203 0.95119’ 1.00882 
Unstable 0.98681 1.08811 0.98756 1.00205 0.95118 1.00876 

l.OOOOO’ 1.01688 0.98802 1.06663 0.98760 1.00100 0.95 159 1.00462 
Unstable 0.98771 1.06613 0.98759 1.00101 0.95159 1.00463 

1.OOaw 1.OOOOO~ 0.98844 1.04719 0.98763 0.99997 0.95 199 1.00048 
l.OwO 1.OOOOO 0.98832 1.04754 0.98762 0.99997 0.95 199 1.00054 

1.00000” 0.98394 0.98882 1.02878 0.98765 0.99894 0.95238 0.99638 
1.00015 0.98397 0.98849 1.02870 0.98765 0.99895 0.95238 0.99646 

1.OOOOO’ 0.96862 0.98919 1.01131 0.98768 0.99792 0.95276 0.99233 
1.00013 0.969 17 0.98916 1.01119 0.98768 0.99793 0.95276 0.99242 

1.00000” 0.95400 0.98952 
0.99982 0.95437 0.98955 

0.99470” 0.98770 0.99690” 
0.99470 0.98770 0.99691 

0.95313 0.98834” 
0.95315 0.98842 

MloocQ” 0.94003 0.98984 0.97889 0.98773 0.99588 0.9535 1 0.98439 
1.00018 0.94004 0.99002 0.97913 0.98773 0.99590 0.95353 0.98448 

l.OOOOO 1.00000 0.98758 0.99980 0.98758 0.99683 0.95123 0.98725 
1.OOOOO 1.00000 0.98758 0.99980 0.98758 0.99683 0.95 123 0.98725 

These same six problems were also solved with the LWEM. The b, values for the 
time-stepping methods were now chosen as -0.375, -0.25, -0.125, 0, 0.125, 0.25, 
and 0.375. They are illustrated in Fig. 6. As predicted by (12b), the first three 
methods were unstable when solving the first three problems. Of the remaining stable 
methods, b, = 0 was most accurate for both wave amplitude and phase velocity. For 
problems 4-6, b, = 0 was most accurate for amplitude while b, = -0.25 was most 
accurate for phase velocity. These results validate (43) and (47). As with the results 
in Table I, the maximum discrepancy between the analysis and model results was less 
than 1%. 
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7. SUMMARY AND CONCLUSIONS 

The preceding analysis has determined the following features of the one- 
dimensional linearized “wave equation” finite element method: 

(0 a similarity to the mixed interpolation approach discussed by Williams 
and Zienkiewicz; 

(ii) a superset for the second-order time-stepping methods proposed by Lynch 
and Gray; 

(iii) the time-stepping methods which most accurately approximate the analytic 
dispersion relationship, and the analytic wave amplitude decay factor, for both the 
WEM and LWEM; 

(iv) a choice of time-stepping methods which avoids loss of accuracy through 
lumping. 

In particular the analysis indicates that an explicit LWEM with f* = 1 is the best 
“wave equation” method since: 

(i) it is the stable LWEM which combines the largest At with optimal 
accuracy, 

(ii) it produces a diagonal matrix for the matrix equations which must be 
solved at each time step [5], and is thus the most economical with respect to 
computation time and storage requirements, 

(iii) it combines in one method, the same accuracy as the best unlumped 
methods for wave propagation and wave amplitude growth. 
Unfortunately, the explicit LWEM also has a major disadvantage; it may have 
problems with 2 Ax waves. This is evident from (28). With f2 = 1.0 and the optimal 
values given by (41) or (43), A = -1 is a 2 Ax eigenvalue for both the WEM and 
LWEM. Therefore any 2 Ax waves introduced into the model will accumulate rather 
than decay, and flip sign from one time step to the next. 

The third example of Fig. 1 shows that an extension of this same problem can exist 
for all short waves. Its amplitude curve for the principal eigenvalue increases 
monotonically with increasing k Ax. (When k Ax = rc, both the progressive and 
retrogressive principal roots are real valued. One of them equals -1.) This implies 
that short waves decay more slowly (or grow more rapidly) in time than long waves. 
Short waves are therefore favoured by the numerical method. The relative energy in 
short waves can thus be expected to increase with each time step and may eventually 
contaminate the numerical solution. The fourth example in Fig. 1 avoids a 
monotonically increasing amplitude curve but unfortunately still permits the 2Ax 
solution A= -1. In order to avoid 2 Ax problems with the LWEM and still retain the 
economy of an explicit method, f2 must be chosen less than 1. This will increase the 
number of time steps in a run and reduce the phase and group velocity accuracy of 
all waves. 

Since f2 usually varies throughout a numerical model, choosing a time-stepping 
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method which depends on this parameter may seem impractical. However, fi can be 
made constant by designing the spatial mesh so that 

Ax = c(h)“’ (48) 

for some constant c. Intuitively, this is not an unreasonable strategy. Constant 
frequency (e.g., tidal) waves have their wave numbers increase as they enter shallow 
water. If k Ax were maintained constant throughout such transitions then the same 
wave sampling rate would exist everywhere in the model. Using the analytic 
dispersion relationship for constant depth (29), a first approximation to uniform 
sampling is attained through (48). Such a choice also implies that the stability 
constraints (10~) and (12b) are not determined by spatial elements in deep regions of 
the model where there may be little variation in the numerical solution. Such would 
be the case if dx were constant throughout. 

Apart from stability considerations, parasitic eigenvalues have been ignored in the 
preceding analysis. They can pose problems when for some wave numbers, their 
magnitudes are greater than those of the principal eigenvalues. In such cases, they 
grow more rapidly, or decay more slowly, and eventually dominate their principal 
counterparts. Ideally we would like to choose a value of d, such that the parasitic 
eigenvalues are always subdominant. This is not possible in general since their 
magnitudes depend on t At. As demonstrated in Figs. 3-5, with small values of r At 
and d, = 4, parasitic eigenvalues are generally subdominant. When considered as 
functions of a positive r At, minimal parasitic eigenvalue amplitudes occur when 

d, = fa = $( 1 + l/(r At)*) (49) 

and have the value 

These d, values coincide with the switchover from a real to a complex eigenvalue. 
For small r At, amplitudes vary only slightly with d,. So an optimal choice is not 
crucial. Provided r At < 1, d, = f is a reasonable compromise. When 02 0, this 
choice guarantees a smaller parasitic eigenvalue for both the WEM and LWEM. And 
the same dominance is ensured for negative 0, provided 

and 

e+ijizf: (5 14 

e+i/4f; (5 lb) 

for the unlumped and lumped approaches respectively. In fact, Figs. 3-5 suggest that 
these conditions may be overly restrictive. 
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